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1 Université Paris 7 Denis Diderot, Service d’Astrophysique & CEA Saclay, France
2 DESPA, Observatoire de Paris, 92195 Meudon Cedex Principal, France

Received 26 December 2000 / Accepted 9 April 2001

Abstract. A simple numerical model has been developed to study the evolution of a disc of planetesimals under
mutual inelastic collisions in the potential field of a central body and of an embedded giant-planet embryo. Masses
for the latter range from 0.5 to 300 Earth masses. A mass of 15 M⊕ is typical of the solid-core model for the
formation of giant planets. The initially cold disc consists of a few thousand particles. Those initially present
between one and three Hill radii from the perturber’s orbit are transferred to very eccentric orbits causing violent
collisions throughout the disc. The perturbation propagates far from the perturber, like a heat transfer: a 15 M⊕
perturber orbiting at 5.2 a.u. heats up the disc from 2.3 to at least 11 a.u. from the central body in a few 105

to 106 years. Relative velocities are typically increased by a factor of 10 to 100. The extent of the heated region
increases with the protoplanet’s mass while the propagation timescale decreases. The resulting radial mixing has
potential applications for the origin of the Asteroid Belt, in particular for the radial distribution of the asteroid’s
spectroscopic families.
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1. Introduction

Terrestrial planets may have formed from a swarm of ac-
creting kilometer-sized planetesimals. Numerical simula-
tions and analytical work have shown that accretion pro-
cesses may be relatively fast, a few 105 years, due to
the so called runaway growth of a few isolated embryos
(Greenberg et al. 1978; Wetherill & Stewart 1989; Barge
& Pellat 1990; Kokubo & Ida 2000). This fast accreting
phase is characterized by the fact that a large fraction of
the mass remains in the smallest kilometer-sized bodies
and that the system remains “cold”, with encounter ve-
locities comparable to the escape velocities of the smaller
objects.

The early stage of planetary accretion is usually stud-
ied with numerical “particle-in-a-box” simulations of the
local evolution of a planetesimal swarm, using a statisti-
cal description of the dynamics of the system that can be
applied to a weakly perturbed disc. Yet, growing giant-
planet embryos perturb the disc at short and long ranges
thus rendering this assumption invalid. Instead, the later
stage of planetesimal accretion phase has been studied
over the last decade with direct deterministic simulations.
These studies have focused mainly on the local gravita-
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tional deflections around terrestrial-planet embryos (Ida &
Makino 1993; Tanaka & Ida 1996) and on the long-range
perturbations of proto-giant planets in the inner Solar
System (Marzari & Scholl 1997; Kortenkamp & Wetherill
2000; Petit et al. 1999; Petit et al. 2000). These simula-
tions have taken into account gravitational deflections and
sometimes gas drag effects. Petit et al. (2000) have stud-
ied the gravitational evolution of test particles within the
inner Solar System, under the influence of both lunar to
martian sized embryos and a fully formed Jupiter. They
have shown that the initial Asteroid Belt region becomes
highly unstable, on a timescale of a few 105 years, due
to the coupled effect of the embryos’ gravitational stirring
and Jupiter’s mean-motion resonances. This mechanism
might result in a strong depletion of the Asteroid Belt and
in an increase of particle eccentricities and inclinations, as
observed today.

The effect of inelastic collisions (sometimes desig-
nated as “physical collisions”) among planetesimals dur-
ing the mid-stage of planetesimal accretion has hardly
been explored, partly because of significant numerical dif-
ficulties. This effect, however, cannot be neglected be-
cause the expected collision time scale of order 104 years
(Weidenschilling 1977) is much lower than the typi-
cal timescale of runaway growth, gas drag decay and
ejection time induced by neighbouring giant planets
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(Petit et al. 2000). Stern & Weissmann (2001) stress that
collisional timescales might be short enough to prevent
a significant fraction of bodies deflected by Jupiter from
reaching the Oort’s cloud. It should be also stressed that
high-velocity encounters mostly result in collisions, i.e.
fragmentation or inelastic rebound, rather than in gravita-
tional deflections or accretion, so they cannot be neglected
in a highly perturbed region. This is particularly true in
the vicinity of a growing planetary embryo and also close
to its mean-motion resonances, where encounter velocities
may far exceed the planetesimal escape velocity.

This problem has been studied, using numerical sim-
ulations, by Thébault & Brahic (1999), who investigated
the coupling of inelastic collisions and gravitational per-
turbations on massless test particles around the 2:1 mean-
motion resonance (at 3.27 a.u.) of a 300M⊕ proto-Jupiter.
Their main result is that high velocity collisions stir the
disc and thus propagate the resonant perturbation inwards
over ∼1.2 a.u. in 105 years. In the resulting perturbed re-
gion , encounter velocities reach a few 100 m/s. Marzari
& Scholl (2000) have chosen the same deterministic ap-
proach to study the effect of collisions and gas drag in close
binary systems but in two dimensions. They have shown
that collisions coupled with gaseous friction efficiently cool
the disc against gravitational heating. Richardson et al.
(2000) have developed a tree code simulation of a disc
containing 106 particles. Jupiter’s gravitational perturba-
tions, inter-particle gravity and perfectly accreting colli-
sions were included. However, the latter assumption may
not be valid for the most perturbed parts of the disc. Up to
now, this approach is limited to the first 103 years of evo-
lution, which is too short with respect to both dynamical
and accretion timescales.

The present study follows the step-by-step approach of
Thébault & Brahic (1999) and of Marzari & Scholl (2000).
It uses an improved numerical model to follow 3000 to
4000 finite-radius particles suffering inelastic collisions and
perturbations from a protoplanet at 5.2 a.u., with a mass
ranging from 0.5 to 300 M⊕, with a particular attention
to the 10–15 M⊕ case, typical of the embryo of a giant
planet. The disc extends from 2 a.u. to 11 a.u., encom-
passing the protoplanet itself. The initial disc is cold, i.e.
random velocities are small compared to orbital veloci-
ties, and particle random velocities of 10 m/s are compa-
rable to the escape velocity of planetesimals in the actual
protoplanetary disc. Since no actual statistical and direct
simulations are able to study a perturbed and extended
planetesimal disc, we deliberately study the simplest, but
non-trivial, mechanical system which shares common
physics with the “real” perturbed planetesimal disc. We
include the embryo’s gravitational perturbations with dis-
sipative collisions among particles. Extrapolation from
the model to the real planetesimal disc is performed via
a scaling law on the number and on the size of parti-
cles. Indeed, it has been shown that a collisional sys-
tem with a large number of small particles may be simu-
lated with a small number of large particles (Brahic 1976).
This scaling law allows us to simulate with only 3000 to

4000 particles the collisional evolution of a disc that
may contain several billions of bodies. This approach has
been used efficiently in the past in different astrophysi-
cal contexts: for the study of dissipative Keplerian discs
(Brahic 1976), planetary rings (Hanninen & Salo 1992,
1994; Hertzsch et al. 1997), planetesimal disc (Thébault
& Brahic 1999; Marzari & Scholl 1997, 2000). Limitations
of this approach are detailed in Sect. 2.

The questions we address are:

– What is the effect of collisions among planetesimals
coupled with strong gravitational perturbations?

– What are the typical collisional timescales?
– What are the particle random velocities in the per-

turbed region?
– What is the spatial extent of the perturbed region?
– Is it possible to have a radial mixing of material ?
– What is the dependence on the embryo’s mass?

The model and numerical algorithm are presented in
Sect. 2. In Sect. 3, the collisionless evolution of the disc
under the influence of the perturber is presented so as to il-
lustrate the role of gravitational perturbations. In Sect. 4,
the collisional evolution of the perturbed disc is described.
Results are discussed in Sect. 5, and in particular the pos-
sible role of all non-considered mechanisms. In Sect. 6,
possible implications for the Solar System formation are
proposed.

2. The model and the numerical algorithm

2.1. The model

2.1.1. Constraints on direct simulations and scaling
factor

The model is a three-dimensional disc composed of 3000
to 4000 massless particles with finite radii orbiting in the
gravitational field of a central body and of a massive sec-
ondary body, which is called the “perturber” hereafter.

The advantage of such deterministic simulations lies
in the possibility to take precisely into account detailed
gravitational perturbations induced by the massive em-
bryo. The disadvantage is a limited number of bodies, typ-
ically a few thousand instead of few billions that actually
populated the early inner Solar System. Nevertheless, the
global collisional evolution of a highly populated system
may be simulated with a small number of large particles
if the collision rate is the same in the “real” system and
in the simulation (Brahic 1976; Trulsen 1971). This con-
straint is satisfied as long as the total geometrical cross
sections NR2 (where N is the total number of bodies and
R their radius) of both the numerical and the “real” sys-
tem are equal (Brahic 1976; Hanninen & Salo 1992, 1994;
Marzari & Scholl 2000). Note thatNR2 equals the optical-
depth times a constant multiplicative factor, which only
depends on the system’s size. As a consequence, collision
rates being equal in both systems, their evolution is simi-
lar as long as other interactions, like mutual gravitational
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Fig. 1. Collisional evolution of finite-radius particles after 50 × 103 years of evolution, close to the 2:1 mean-motion resonance
of Jupiter (3.27 a.u.), in two different simulations with different particle radii (R) and different number of particles (N), but the
same optical depth. The comparison between the two figures shows a similar evolution since the average number of collisions
per particle remains nearly the same (Ncoll/Part).The black line shows the local median eccentricity.

deflections, can be neglected. Two further conditions must
be met to avoid numerical artefacts. First, to avoid finite
size effects, the particle radius must be much smaller than
any characteristic lengthscale of the system such as the
size of the system, the width of the perturber Hill’s radius
or of its mean-motion resonances. Second, the particle sur-
face density should be large enough to avoid strong sta-
tistical noise. To illustrate the validity of these arguments
Fig. 1 presents test simulations that clearly illustrate the
identical behaviour of two dynamically perturbed systems
with same optical depth but different N and R.

2.1.2. Characteristics of the model

Several mechanisms that may be relevant for the early
Solar System are deliberately neglected in the framework
of our step-by-step study, which focuses currently on dis-
sipative collisions coupled with proto-Jupiter’s gravita-
tional perturbations. As a consequence of the previous
Sect. (2.1.1) the following assumptions are used in the
present study:

– No gravitational deflections among particles: This
assumption is realistic in a disc perturbed by a
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proto-Jupiter, as shown a posteriori in Sect. 5.2. In
addition, this is a condition of validity of the scaling-
law described in Sect. 2.1.1;

– The particle’s radius is 5×10−4 a.u.: This value is cho-
sen so that the collision rate among particles is about
1 collision per particle every 104 years at 3 a.u. away
from the central body. This is in agreement with the
collision timescale that may be expected initially in
the region of the actual Asteroid Belt, assuming that
about 5 M⊕ of kilometer-sized planetesimals were ini-
tially present in this region (assuming ρ = 3 g/cm3)
with random velocities of ∼10 m/s. One particle in
the simulation does not represent one planetesimal (see
Sect. 2.1.1), it is why the radius may appear unreal-
istic (it is comparable to the actual size of Jupiter).
One particle is just the member of a dynamical system,
which is believed to share a similar physical behavior
with the actual planetesimal disc. The particle’s radius
is a scaling factor that reproduces the real collision rate
and does not influence the dynamical outcomes of col-
lisions. Because of the poor knowledge of the initial
state of the actual planetesimal swarm, the collision
rate is somewhat uncertain. Thus, it should rather be
considered merely as a scaling factor from which the
timescales of the present study are derived.

– Equal-mass bodies: Direct simulations cannot handle
enough particles to consider a realistic size distribu-
tion. In addition, taking into account a size distri-
bution would make ambiguous the definition of the
optical depth, not suitable for the scaling law de-
scribed in Sect. 2.1.1. Thus, the chosen radius implies
that we only study the population of kilometer-sized
bodies, which contains most of the mass and of the
cross-section in the actual planetesimal disc. Size dis-
tribution will be included as the next-step of our step-
by-step study.

– Particles suffer inelastic rebounds: Inelasticity of col-
lisions is taken into account in the form of a radial
restitution coefficient, εr (Brahic 1976) set to 0.3. This
implies a 90% kinetic energy dissipation in the radial
direction, which is qualitatively in agreement with ex-
pected dissipation rate during high velocity impacts
(Petit & Farinella 1993).

– No Fragmentation: Not considering fragmentation is
a somewhat unrealistic approximation when one ex-
trapolates the results of the simulations to the early
Solar System, but direct simulations are not able to
handle this mechanism. However, considering a simple
fragmentation model would not be necessarily more
realistic than inelastic rebound. Indeed, some authors
have considered simple fragmentation models in di-
rect simulations (like Beaugé & Aarseth 1990) with
a fixed number of fragments to avoid the simula-
tion from becoming unmanageable. However, because
of the later assumption, collision rates among par-
ticles of different sizes are not respected, that is in
contradiction with the basic constraints of our ap-
proach (see Sect. 2.1.1). During a fragmentation, nu-

merical experiments have shown that most material
is ejected in a plane roughly at righ angle to the col-
lision axis (Nakamura & Fujirawa 1991; Giblin et al.
1994; Martelli et al. 1994) that is dynamically very dif-
ferent from rebound trajectories. However, since the
collision axes are isotropically distributed over many
collisions, the fragments of many collisions should be
also isotropically distributed. In conclusion, whereas
inelastic rebound (rather than fragmentation) is unre-
alistic in high-velocity impacts, post-impact trajecto-
ries of both particles may be considered as tracers of
fragment’s trajectories In Sect. 5.3 the possible conse-
quences of fragmentation on planetary formation are
discussed.

– No Accretion: Accretion is only possible if impact ve-
locities are very low in a kilometer-sized planetesimal
disc. As shown in Sect. 4.1.3, the proto-Jupiter will
enhance encounter velocities far beyond planetesimal’s
escape-velocity in a very short timescale making accre-
tion inefficient. In addition, accretion is a rare event for
the population of kilometer-sized planetesimals. Thus
it may not have any influence within the timescales we
consider here.

Initial conditions are chosen to reproduce the initial dy-
namical state of a cold disc of kilometer-sized planetesi-
mals perturbed by a giant-planet embryo. They are listed
below:

– The perturber is on a circular orbit at 5.2 a.u. (ap).
It is in agreement with current models of planetary
formation that predict that runaway embryos will be
on almost circular orbits because of dynamical fric-
tion (Wetherill & Stewart 1989; Barge & Pellat 1990;
Kokubo & Ida 2000). The mass of the perturber, Mp,
is constant and chosen between 0.5 M⊕ and 300 M⊕.
A 10–15 M⊕ perturber is considered as the Standard
Case and is investigated in details since it is thought to
be the typical mass of a giant-planet embryo (Pollack
et al. 1996). The perturber is considered to be point-
like, thus there is no collision between the perturber
and the particles.

– The particles disc has a width of 3 to 6 a.u. and lies
inside or outside the perturber’s orbit.

– Orbital elements of particles are chosen at random
so that random velocities are about the escape veloc-
ity of planetesimals (∼10 m/s), which corresponds to
the initial state of an unperturbed planetesimal disc
(Wetherill & Stewart 1989). This yields small initial
values of eccentricities and inclinations, of the order of
10−4 to 10−3.

– The surface density decreases by the power −1 of he-
liocentric distance.

2.2. Numerical procedure

The motion of particles is numerically integrated by fully
taking into account gravitational forces of both the central
body and of the perturber. The whole system evolves using
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a fixed time-step dT . Each one is divided into two sub-
steps: (1) integration of motion (2) detection and treat-
ment of collisions.

2.2.1. Integration of motion

Particles’ positions and velocities are described using
the usual three-dimensional Cartesian coordinates system.
Trajectories are integrated with a fixed time-step, dT , us-
ing a Bulirsch-Stoer algorithm (Press et al. 1992), which
is known to be fast and reasonably accurate (Murison
1989). This integrator was preferred to a simplectic inte-
grator like the Mixed Variable Simplectic (MVS) integra-
tor (Wisdom & Holman 1991) because the nominal time-
step of the MVS is much too large for efficient collision
detection. The nominal order of the Bulirsch-Stoer is high
(13th order) so as to maintain the error on particle po-
sitions well below their radius over the typical collision
timescale. We checked that the absolute error on particle
positions is at worst 10−5 a.u. over 10 000 years in the
whole system. Jacobi’s constant of particles (i.e. the en-
ergy in the reference frame rotating with the perturber)
is preserved within an error of 10−8 in the absence of in-
elastic collision.

2.2.2. Detection of collisions

Whereas the time-step of a Bulirsch-Stoer is shorter than
for a MVS integrator, its nominal value is about 0.1 or-
bital period. This is much too long for the “classic” colli-
sion detection algorithm, based on a second or third-order
polynomial expansion of particle trajectories (Brahic 1976;
Hanninen & Salo 1992, 1994; Richardson et al. 2000) to
work efficiently. The following improved algorithm was
built and especially designed to be used with a Bulirsch-
Stoer integrator.

The whole system is first integrated from T to T+dT
not considering collisions. Particle pairs that had a close
encounter during the latter time-step are then detected.
To perform this with little extra computation time we
take advantage of the fact that a Nth order Bulirsch-Stoer
time-step is divided into N equal smaller time-steps (if
based on the Stoerm’s Rule or 2N if based on the modi-
fied mid-point method, see Press et al. 1992). A Nth or-
der polynomial is built (N = 13 in our simulations) for
all particles to determine at any times inside the time-
step, the mutual distance between neighboring particles.
The intrinsic error of the Nth order polynomial is ex-
tracted from the Bulirsch-Stoer error checking routine.
The distance of closest approach of two particles is de-
termined by finding iteratively the minimum of function
f(t) = (R1(t)−R2(t))2 where R1(t) and R2(t) are the po-
sition vectors of particles 1 and 2 at time t respectively and
are calculated using the Nth order polynomial of each par-
ticle. All particle pairs which distance of closest approach
is lower than the sum of their radii plus the polynomial’s
error, are selected as “candidate pairs”.

Exact collision times are only calculated for the candi-
date pairs, with the “classic” collision detection algorithm
using a fourth order Runge-Kutta with a tiny time-step
(lower than 10−3 of the orbital period). Colliding particles’
trajectories are integrated up to the exact collision time,
then collisions are processed and motions are integrated
again up to T+dT .

This method is significantly faster than the classic
scheme partly because the number of candidate pairs is
negligible compared to the total number of neighbouring
particles. In addition, the use of a long nominal time-step
of the order of 0.1 orbital period is now made possible.
This saves significant computer time. In fact, the “classic”
method can only work with a very small nominal time-step
that has to be smaller than 10% of the one used in our
new method. Tests showed that the net gain in compu-
tation time is a factor of 2 to 3, rather than 10 because
one Bulirsch-Stoer iteration needs more computational ef-
fort than an explicit integrator like a Runge-Kutta or a
Leap-Frog.

3. Disc’s evolution without collision

To get a clear understanding of the dynamical evolution of
the model, we present here a description of the well-known
behavior of a collisionless particle disc under the influence
of a perturber. We show why collisions are expected to
play an important role on the short term evolution.

3.1. Evolution of particles’ eccentricity and inclination

Particle eccentricities and inclinations are initially in the
range of 10−4 to 10−3. However, under the influence of a
15 M⊕ perturber, eccentricities increase quickly and sev-
eral dynamical structures clearly appear (Fig. 2). They
may be classified into three qualitatively different regions,
characterized by the Jacobi energy (Ej) of the particles
(Hayashi et al. 1977; Ida & Makino 1993), given by:

Ej =
−1
2a
− a1/2(1− e2)1/2 cos(i) + U (1)

where a, e and i are the particle’s semi-major axis, ec-
centricity and inclination respectively. U is the potential
energy and is calculated in the barycentric frame centered
on the Sun and rotating with the perturber. In this refer-
ence frame the central body and the perturber are located
atX = −µ andX = 1 respectively where µ equalsMp/Mc

with Mc standing for the mass of the central body. The
expression of U is (Hayashi et al. 1977):

U =
1
r
− µ

r1
− 1− µ

r2
+

3
2

+
9h2

2
− 7h3 + o(h3) (2)

where r1 and r2 are the distance from the particle to the
perturber and to the central body respectively, and r is
the distance from the particle to the system’s barycenter;
h is the Hill parameter of the perturber and is equal to
ap(µ/3)1/3. Constant terms are chosen so that U = 0 at
Lagrange’s points L1 and L2 of the perturber.
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Fig. 2. Eccentricity of 4000 particles after 1000 orbital periods of a 15 M⊕ perturber located at 5.2 a.u. on a circular orbit.
Each point represents one particle. Lines are contours of constant Jacobi energy. The thick contour is the Ej = 0 contour.

Fig. 3. Inclination of 4000 particles after 1000 orbital periods of a 15 M⊕ perturber located at 5.2 a.u. on a circular orbit. Each
point stands for one particle.

The three regions are the following:

1. The distant region (Ej < 0). Far away from the
perturber, particle eccentricities are weakly enhanced
(e ≤ 10−3), with the important exception of discrete
narrow regions corresponding to the mean-motion res-
onances. Because of the low mass of the perturber, of
the short period of time considered and of the circular-
ity of perturber’s orbit, only first-order mean-motion
resonances appear;

2. The feeding zone region (Ej > 0). Particles have the
possibility to enter inside the Hill sphere of the planet
(Hayashi et al. 1977), and then may be ejected from
the system or accreted by the planet. They can survive
in this region with a very low eccentricity inside the 1:1
corotation resonance with the perturber. This region

extends typically between semi-major axes ap(1 − h)
and ap(1 + h);

3. The region located along the Ej = 0 line is the most
perturbed and has a clear “antenna” shape rooted at
semi-major axes ap(1 ± 3h) along the region of over-
lapping resonances (it is a chaotic region as shown by
Wisdom 1980). Particles with a small positive Ej may
closely approach the perturber and are then quickly
scattered: their eccentricities may reach 0.2 or 0.3 in a
few orbital periods. These features were also observed
by Ida & Makino (1993) with a fullN -body calculation
of particles interacting with a protoplanet.

The inclination diagram (Fig. 3) is in sharp contrast with
the (a, e) graph (Fig. 2). Indeed particle’s inclinations re-
main mostly unchanged because of (i) the non-inclined
orbit of the perturber (ii) the low initial inclinations of
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Fig. 4. Encounter velocities in the collisionless disc, projected onto the mid-plane (in-plane direction). Each point stands for a
close encounter between two particles, but the collision itself is not processed. The perturber’s mass is 15 M⊕.

Fig. 5. Encounter velocities in the collisionless disc, projected onto the vertical axis of the disc (out-plane direction). The
perturber’s mass is 15 M⊕.

planetesimals. Only some bodies, which have been
strongly deflected along the Ej = 0 line, have their in-
clination significantly increased. The usual approximation
i ∼ e/2, valid in a collisionally relaxed disc (Barge & Pellat
1990) is not valid any more in the perturbed disc, and the
collision rate is no longer proportional to the optical depth
(see below).

3.2. Relative velocities and encounter rate

The inplane and outplane magnitude of encounter veloci-
ties in the collisionless disc are displayed in Figs. 4 and 5
respectively. A “butterfly wings” structure is present in

Fig. 4, extending on both sides of the perturber’s loca-
tion. These are the high velocity encounters, of the order of
2000 m/s, which involve at least one particle strongly de-
flected by the perturber along the Ej = 0 line. Because of
large eccentricities, high velocity encounters take place in
a wide region extending from 2.5 a.u. to 10 a.u. Numerous
low velocity encounters, involving weakly perturbed bod-
ies are also present. The resulting encounter speed is of the
order of 10 m/s, which is comparable to its initial value.

Encounters velocities in the out-plane direction
(Fig. 5) are 100 to 1000 times weaker than in the in-plane
direction. This anisotropy reflects the asymmetry between
particles’ eccentricity and inclination. Consequently the
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perturbed disc is like a “thin hot layer”. This behaviour
is the consequence of the initial state of the planetes-
imal disc, in which inclinations are initially very low
(∼10−4). Perturber’s gravitational perturbations induce
a two-dimensional dynamics on a short-term evolution,
which consequences are detailed below.

The “particle-in-a-box” encounter rate per time unit,
per cross section unit, and normalized to one target body
and one projectile is (Spaute et al. 1991):

Nc =
Ve

V
(3)

where V is the volume of space occupied by the population
of particles, and Ve the impact velocity. It is approximated
by eVcirc, where Vcirc is the circular orbital velocity . For
an extended population in semi-major axes (∆a > 2ae),
V is approximated by:

V ∼ 4πa2(∆a)i (4)

Nc is then proportional to e/i. In a collisionally relaxed
disc, e/i is a constant factor of the order of 1 and the en-
counter rate only depends on the optical depth and on the
orbital period. However, the encounter rate is strongly en-
hanced here by the asymmetry between e and i. In Figs. 4
and 5 the encounter rate is about one encounter per parti-
cle every∼200 years between 2 and 4 a.u., rather than one
encounter per particle every 104 years in an unperturbed
disc. In conclusion, one may expect inelastic collisions to
play an important role on the short-term evolution: this
is the subject of the following section.

4. Collisional evolution of the disc

4.1. Standard case: A 10 to 15 M⊕ perturber

4.1.1. Evolution of eccentricities and inclinations
in the inner disc

The collisional evolution of the inner disc shows significant
departure from the collisionless case very early (Fig. 6). In
this simulation, the perturber’s mass is 15 M⊕. After only
2000 years, the Ej = 0 wings as well as the 2:1 (3.27 a.u.)
and 3:2 (3.9 a.u.) resonances begin to spread out. These
structures are unstable against collisions, which occur at
very high velocities (Fig. 4) resulting in major modifica-
tions of colliding particle’s orbits. Because of their en-
hanced eccentricity, colliding bodies may reach initially
weakly perturbed regions, where their random kinetic en-
ergy is transferred into the cold disc via multiple subse-
quent collisions. A collisional diffusion wave is then trig-
gered. This is very similar to a heat transfer. This kind
of mechanism was first described by Thébault & Brahic
(1999) with a 300 M⊕ perturber in the restricted case of
the 2:1 resonance as the only source of eccentric particles.
Still, it is clear in Fig. 6 that the 2:1 resonance generated
diffusion is a relatively marginal phenomenon compared
to the main wave triggered close to the perturber along
the Ej = 0 line.

After 1.6 × 105 years the collisional diffusion has
reached its maximum extention down to 2.2 a.u. In this
perturbed region, particle eccentricities increase linearly
from 0.005 at 2.2 a.u. to 0.05 at 3.5 a.u. and are almost
stable beyond. In addition, the region of overlapping res-
onances is almost depleted and only a few particles re-
main along the Ej = 0 line. Indeed, these particles are the
most eccentric of the system and thus are in some sense
the “energy tank” of the collisional diffusion. On the one
hand, only one collision is necessary to remove them from
the chaotic region. On the other hand, many collisions
are necessary for particles with moderate eccentricity to
migrate from the colder disc up to the chaotic region. In
consequence, this region is progressively depleted. Further
evolution of the system (a progressive damping of inclina-
tions and eccentricities due to the inelasticity of collisions)
is much slower and is not investigated in the present study.

Whereas initial inclinations were much smaller than
forced eccentricities (see Sect. 3.1), they quickly increase
as collisions redistribute energy in all degrees of freedom.
Thus, the system evolves towards equipartition (i ∼ e/2),
which is almost reached after only 2000 years. This rapid
equipartition strongly affects the collision rate, which is
a somewhat counter-intuitive aspect of collisional diffu-
sion: it is most of the time comparable to its value in a
non-perturbed cold disc. To clearly illustrate this point, in
Fig. 7 locations of collisions as a function of time during
the first 5× 104 years of evolution are reported. Since the
particle surface density decreases as 1/r, there are more
collisions in the inner part of the disc, which as a result ap-
pears darker in Fig. 7. During the first 5000 years of evolu-
tion, the collision rate is high in the vicinity of the chaotic
region (between 4 and 5 a.u.) and as well as in the vicinity
of the mean-motion resonances (at 3.27 and 3.9 a.u.) i.e.
1 collision per particle every 200 years, which is consis-
tent with the study of Sect. 3.2. However, this period of
high collision rate is short compared to the 2× 105 years
needed for the collisional diffusion to reach its maximum
extention. Indeed, after a mere 5000 years the collision
rate falls down to a value comparable to its value in an
unperturbed disc i.e. about 1 collision per particle every
104 years between 2 and 4 a.u. This rapid decrease in the
collision rate reflects the increase in particle inclinations
due to collisions (see Sect. 4.1.1). Thus, the disc can freely
expand and the collision rate decreases proportionally to
the ratio e/i. When equipartition is reached, no further
significant evolution of the collision rate is observed.

4.1.2. Evolution of eccentricities and inclinations
in the outer disc

As in the inner disc, a heat transfer is observed in the
outer disc (see Fig. 8). In this simulation, the perturber’s
mass is 10 M⊕ to shorten slightly the extent of collisional
diffusion. After 106 years of evolution (and 18 “real” days
of computer time), the whole system, i.e. from 5 to 11 a.u.,
is perturbed. It is not clear whether it stops around 11 a.u.
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Fig. 6. Evolution of eccentricities and inclinations of particles in the inner disc at three different epochs. The 15 M⊕ perturber
is located at 5.2 a.u. on a circular orbit.
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Fig. 7. Radial positions of detected collisions as a function of time. The point density is an indication of local collision rates.

or goes further beyond. However, it appears that the prop-
agation slows down with time: the system barely changes
between 6 × 105 and 106 years. Thus the propagation
timescale is somewhere in this range. In the perturbed
region, average eccentricities range from 0.01 to 0.05, and
inclinations are about half.

An important aspect of outward collisional diffusion is
that it propagates over a wide region of at least 6 a.u.
whereas the inner collisional diffusion, for a same per-
turber’s mass, extends over 2.5 a.u. only. This difference
may be partly explained with simple considerations. First,
as particles migrate outwards due to collisions and gravita-
tional deflections by the perturber, their mean-free path
(given by 2ae) increases linearly with their semi-major
axis. This is a purely geometrical effect enhancing the ex-
tent of the outward diffusion. In addition, during a colli-
sion, an eccentric particle transfers a part of its random
kinetic energy (that is of the order of e2/a, since ran-
dom velocities are of the order of eVcirc ∼ e/

√
a, with

GMc = 1) to a particle initially on a circular orbit. If one
considers the conservation of random kinetic energy to a
first order approximation, the post-collision eccentricity of
the target body is proportional to

√
a, which increases at

larger heliocentric distances. The combination of this lat-
ter effect with the geometrical increase of mean-free path
implies that a particle migrating outwards has an increas-
ing eccentricity. This may explain the wide extent of the
outward collisional diffusion.

4.1.3. Final random velocities

In the heated region of the inner disc, random velocities
increase from 20 m/s to 1500 m/s at 2.2 a.u. and 5 a.u.
respectively (Fig. 9). They are on average a few hundred
meters per second, which are 10 to 100 times their ini-
tial values. Only a factor of 2 remains between out-plane
and in-plane components of impact velocities. In the re-
gion of coorbital bodies, random velocities are only slightly
enhanced.

The same behavior is observed in the outer disc
(Fig. 10): random velocities are maximum at 6 a.u. (about
500 m/s) and decrease to 10 m/s at 11 a.u. As for inward
collisional diffusion, random velocities are about twice as
high in the plane of the disc as in the out-plane direction.
In comparison to the inner disc, there is about a factor
of two difference in random velocities: this is consistent
with the decrease orbital velocity at larger heliocentric
distances.

4.1.4. Radial mixing

The collisional diffusion is also associated with a substan-
tial radial mixing and spreading of material on a length-
scale ranging from one tenth to one whole astronomical
unit (see Fig. 11). Diffusion in the inward direction is not
only due to the perturber’s dynamical effect, but also fa-
vored by the collision inelasticity that decreases particles’
semi-major axes. Moreover, a substantial fraction of coor-
bital bodies has migrated inwards, down to 3 a.u. On the
contrary, only a few particles below 5.2 a.u. has migrated
up to the coorbital region. The region extending below
2.5 a.u. does not present any radial mixing, as the inten-
sity of collisional diffusion is weak there.

The radial mixing in the outer disc (Fig. 12) has
qualitatively the same characteristics, however with
larger lengthscales because of larger heliocentric distance.
Between 6 a.u. and 8 a.u., the typical mixing length is
about 1.5 a.u. Particles that were initially between 5 and
6 a.u. are now spread throughout a region extending from
5 to 9 a.u. Beyond 10 a.u., the radial mixing lenghtscale
is short: a mere 0.1 a.u.

4.2. Dependence on the perturber’s mass

The size of the perturbed region as a function of the
perturber’s mass is quantified through multiple runs of
the model with different masses ranging from 0.5 M⊕
to 300 M⊕. Each case is simulated at least twice with
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Fig. 8. Evolution of particle eccentricities and inclinations in the outer disc perturbed by a 10 M⊕ body.
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Fig. 9. Impact velocity in the disc perturbed by a 15 M⊕ body, at the end of the collisional diffusion. The bold line shows the
local median of impact velocity. The dashed line is the magnitude of impact velocity projected onto the disc’s plane. The dot
and dash line shows the magnitude of the impact velocity projected onto the vertical axis of the disc.

Fig. 10. Impact velocity in the outer disc perturbed by a 10 M⊕ body at 106 years. The bold line shows the local median of
impact velocities. The dash line is the magnitude of the in-plane impact velocity. The dot and dash line is the magnitude of the
out-plane impact velocity.

similar initial conditions (only initial random numbers
were modified) to check that all results are stable. The
inner limit of the collisional diffusion, as a function of the
perturber’s mass, is presented in Fig. 13. It is defined as
the point where random velocities become greater than
30 m/s, chosen so that the rebound velocity is larger than
the planetesimal’s escape velocity. For perturber’s masses
ranging from 1 to 100 M⊕, this limit shifts linearly with
the logarithm of the perturber’s mass. However, a kind of
transition appears at 1 M⊕: for a perturber lighter than

1 M⊕, particles deflected along the Ej = 0 line are not
eccentric enough to reach the location of the 2:1 and 3:2
mean-motion resonances. Note also that a 300 M⊕ body
perturbs the disc down to 0.9 a.u., below the Earth’s orbit.

The extention of collisional diffusion in the outer disc,
as a function of the perturber’s mass is reported in
(Table 1). Due to its large extention it was not possible to
perform simulations with a massive perturber. Thus, the
range of masses between 1 M⊕ and 30 M⊕ was studied in-
stead. A few Earth mass body may perturb the disc up to
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Fig. 11. Radial mixing at the end of the propagation of collisional diffusion with a 15 M⊕ perturber. Each column is a grayscale
histogram of the final semi-major axes of bodies (Y axis). Initial semi-major axes are reported on the X-axis. For example,
bodies that were initially located at 3 a.u., are now spread between 2.5 and 4.5 a.u. at the end of the collisional diffusion. In
each column, the value of the most populated bin is normalized to 1.

Fig. 12. Radial mixing in the outer disc, after 106 years with a 10 M⊕ perturber. Each column is a grayscale representation of
the histogram of the final semi-major axes of bodies (Y axis) whose initial semi-major axis is on the X-axis.

8 a.u. from the central body, over a timescale of 106 years.
The most striking result is that a mere 1 M⊕ perturber
at 5.2 a.u. is able to heat the disc up to 7.5 a.u. over the
same timescale.

5. Possible role of additional mechanisms

5.1. Gas drag

In the framework of our step-by-step study of a perturbed
planetesimal disc, gas drag has been deliberately neglected

since its effects have been much more investigated than
collisional processes (Marzari & Scholl 1997; Marzari &
Scholl 2000; Tanaka & Ida 1996; Kortenkamp & Wetherill
2000). It is well known that gas drag decreases both ec-
centricity and inclination of kilometer-sized bodies, and
to a lesser extent, their semi-major axes. Thus collisional
diffusion may be partly damped by gas drag. A simple
model of gas drag will be therefore considered in a future
study. Some unpublished results of P. Thébault (private
communication) suggest that collisional diffusion is indeed
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Fig. 13. Heliocentric position of the collisional diffusion inner front, as a function of the perturber’s mass. The mass unit is in
Earth’s mass. The perturber is located at 5.2 a.u.

Table 1. Limit of outward collisional diffusion as a function of
the perturber’s mass. The outer limit for a 15 and 30 M⊕ per-
turber may be between 12 and 20 a.u. For a 10 M⊕ perturber
it may be between 11 and 13 a.u.

Perturber’s Limit of

mass collisional

diffusion

30 M⊕ >> 11 a.u.

15 M⊕ >> 11 a.u.

10 M⊕ > 11 a.u.

5 M⊕ 9 a.u.

3 M⊕ 8.5 a.u.

1 M⊕ 7.5 a.u.

substantially damped by gas drag, however its spatial ex-
tention remains comparable to the gas-free case.

5.2. Gravitational deflections

In the present simulations, gravitational deflections among
particles were neglected, whereas in a cold disc, ran-
dom energy comes mainly from gravitational deflections
among planetesimals associated with differential rota-
tion. However, as far as we are concerned with the
population of kilometer-sized planetesimals, gravitational
deflections may be realistically neglected since random
velocities, Vr, between particles are 10 to 100 times
larger than kilometer-sized planetesimal escape velocity,
Ve (∼10 m/s). This has two consequences:

1. The gravitational cross section becomes comparable to
or smaller than the physical cross section. Indeed the

two-body cross-section is approximated by (Safronov
1969):

σ = πr2

(
1 +

V 2
e

V 2

)
(5)

where r and Ve are the particle’s radius and escape
velocity respectively. The first term in the parenthesis
stands for the geometrical (or “physical”) cross section,
and the second term stands for the gravitational cross
section. If V ≥ Ve then the gravitational cross section
is lower than the geometrical cross section, as it is the
case in the system we study;

2. During a high-speed gravitational encounter, ∆Vr/Vr

(∆Vr is the magnitude of velocity change in a given di-
rection) is of the order of (Ve/Vr)2. This is very small
compared to 1. By comparison, during an inelastic col-
lision ∆Vr/Vr ∼ 1.

For these reasons, neglecting gravitational deflections
among particles is a realistic approximation in the case
of a very perturbed disc, as considered here. The same
approximation is done by Stern & Weisman (2001) that
study the effect of collisions involving bodies deflected by
the giant planets and particles of the cold planetesimal
disc.

5.3. Fragmentation and size distribution

Usual models of fragmentation (Petit & Farinella 1993;
Benz & Asphaug 1999) imply that kilometer-sized basaltic
bodies, colliding at velocities greater than 50 m/s, would
suffer a catastrophic disruption, producing fragments with
a steep size distribution. It is thus clear that our hy-
pothesis of inelastic rebound is not realistic although the
energy dissipation rate of 90% used in the simulations
may be quite realistic. Bodies strongly deflected by the
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protoplanet will be catastrophically disrupted after their
first collision. This bombardment takes place in the wide
region in the reach of particles deflected by the perturber
along the Ej = 0 line. For a 15 M⊕ perturber this region
extends from 3 to 10 a.u. (Fig. 2), and thus may be fed
with a large population of fragments. It is then logical to
ask the following question: may the fragments heat up the
rest of the cold planetesimal disc? This question needs a
full numerical simulation of a new type to be answered. We
rather give below some simple considerations as direction
for future work.

As soon as different mass bodies interact, energy
equipartition takes place such that random kinetic energy
balances out to M1V

2
1 = M2V

2
2 where V1 and V2 are the

random velocities of bodies with masses M1 and M2 re-
spectively. This result is exact for elastic collisions (such
as gravitational deflections); but Stewart et al. (1984)
have shown that collision inelasticity prevents exact en-
ergy equipartition. However the correcting factor is of the
order of 1 + εr, which does not modify our discussion.
Suppose that a cold swarm of M1 mass planetesimals col-
lides with a swarm of M2 mass fragments (M1 > M2)
generated after some violent collisions. Random velocities
of planetesimals and fragments are V1 and V2 respectively.
Two different cases are possible:

1. If V2/V1 > (M1/M2)1/2, fragments are able to stir the
cold disc of planetesimals. In consequence, the colli-
sional diffusion may propagate but its extention may
be less than observed in the present simulations. The
following scenario may be possible: after the forma-
tion of a 15 M⊕ Jupiter embryo, the part of the disc
between 3 and 10 a.u. heats up due to violent colli-
sions (see Fig. 4). Once all eccentric parent bodies have
been disrupted, fragments maintain remaining plan-
etesimals in a residual excited state;

2. If V2/V1 < (M1/M2)1/2, the random energy of the ini-
tially unperturbed planetesimal swarm is transferred
to the swarm of fragments. In consequence the plan-
etesimal disc cools down. The following scenario may
be envisioned: like in the previous case, the region ex-
tending from 3.5 to 10 a.u. is first heated up via violent
collisions. Later, the fragment population cools down
the remaining planetesimal swarm. Consequently, two
phases are present: a very thin and cold planetesimal
disc embedded in a hot swarm of fragments.

These considerations emphasize the importance of the dis-
tribution of random velocities among different mass bodies
for the dynamical evolution of the perturbed system.

Whereas equal-mass particles were considered in our
simulations, it is expected that the size of planetesimals
may increase with heliocentric distance (Lissauer et al.
1995; Pollack et al. 1996). For example Pollack et al.
(1996) considers that planetesimal’s radii are of 100 km
at 5 a.u. when the Jupiter’s core was still suffering run-
away growth. Thus, heavy bodies deflected by the proto-
Jupiter and that collide with kilometer-sized planetesimals

in the inner Solar System may not suffer catastrophic frag-
mentation. They would suffer an erosion process instead,
because of the ∼103 to 106 ratio in masses. Such colli-
sions may produce numerous kilometer-sized fragments on
highly eccentric orbits, thus increasing the efficiency of in-
ward collisional diffusion. The study of these mechanisms
requires a somewhat different numerical approach. This
will be considered in the future.

6. Potential application to the Solar System

6.1. Slowing down of runaway accretion processes

Bearing in mind all previous considerations on the
possibility for collisional diffusion to exist in the early
Solar System, we now envision the potential consequences
of this mechanism by doing the hypothesis that collisional
diffusion actually occurs as observed in the simulations.
The apparition of a proto giant-planet’s core may slow
down accretion processes of other runaway embryos
in the perturbed region. As shown in Sect. 3, in the
perturbed region particle random velocities rise from
100 to 1500 m/s, depending on their location and on
the perturber’s mass. Indeed, the minimal condition
required to slow down runaway accretion is that the
escape velocity of present runaway embryos be lower
than rebound velocity among planetesimals. Assuming
a typical rebound velocity of a few 100 m/s in the
perturbed region, the minimum mass of a runaway body
must be 1023 g to 1024 g (or 100 km to 400 km radius) to
maintain their accretion process even under the influence
of collisional diffusion. This simple estimate neglects
dynamical friction that may substantially lower this
minimum mass. Thus, it is natural to ask the following
question: what is the size of runaway embryos in the
perturbed region when the collisional diffusion starts? It
has been shown that collisional diffusion appears almost
simultaneously with Jupiter’s embryo. In consequence
the previous question hides at least two other important
questions, the answers to which are not currently known:
1. What is the typical growth timescale of runaway
embryos in the perturbed region?
2. When does a 15 M⊕ proto-Jupiter appear?

Lissauer (1987) proposes a simple analytical expres-
sion of the runaway growth rate, valid at the beginning of
runaway accretion:

dR
dt

=

√
3
π

σΩ(1 + 2θ)
4ρ

(6)

where R is the embryo’s radius, σ the solid material sur-
face density, ρ the density of the embryo, Ω the Keplerian
angular speed, and θ the gravitational correcting factor.
Wetherill & Cox (1985) show that at 3 a.u. (i.e. in the
perturbed region below Jupiter’s orbit) θ may be be-
tween 100 and 1000. From Eq. (6) an estimate of the
growth timescale of a 200 km embryo (Te) at 3 a.u. is 105

to 106 years, assuming a constant radius increase with
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Fig. 14. Distribution of asteroid spectroscopic families from Gradie & Tedesco (1982).

ρ = 3 g/cm3 and σ = 1.2 g/cm2 (Hayashi et al. 1981).
For comparison, Wetherill (1992) assumes that 1026 g em-
bryos appear at 3 a.u. in 2× 106 years, which also implies
that 1023 g embryos appear in a few 105 years, assuming
a constant radius increase.

The answer to the second question is even more dif-
ficult. Concerning Jupiter’s formation, one of the funda-
mental difference with the inner Solar System environ-
ment is the presence of ice beyond 4.5 a.u. (Lissauer 1987),
which abruptly increases the surface density of solid mate-
rial by a factor of 3 to 4. A model of proto-Jupiter growth
has been presented by Pollack et al. (1996) in which the
Jupiter’s core formation timescale (referred as Tj) is about
5×105 years. More recently, some authors have suggested
that Jupiter may have fully formed in a few 106 years
only, implying a very short timescale for the apparition
of the core, of the order of 105 years (D. Gautier, private
communication).

In conclusion, it seems that Te and Tj are of the same
order. Due to numerous uncertainties that still exist about
the formation processes of planetary embryos, and espe-
cially about initial conditions, it is not possible today to
discard the possibility that a 10–15 M⊕ Jupiter embryo
may have appeared before the formation of 100 to 1000 km
embryos at 3 a.u. from the Sun. In this case runaway
growth of kilometer-sized planetesimals may have been
slowed down or even completely stopped. In the opposing
hypothesis of already present lunar sized bodies, accre-
tion of the biggest bodies may not have been stopped but
rather slowed down due to the simple effect of high impact
velocities, unfavorable for gravitational sticking, switching
from a “runaway growth” to a very slow “orderly growth”
as described by Safronov (1969).

Regarding the outer disc beyond Jupiter, it is un-
likely that collisional diffusion may have stopped accre-
tion. Indeed, the mass of runaway embryos may increase

with heliocentric distance (Lissauer et al. 1995). Thus, it
is likely that a population of runaway bodies larger than
1024 g was already present between 5 and 10 a.u. at the
time the 15 M⊕ proto-Jupiter appeared. This population
may have been little affected by the collisional diffusion
triggered by the proto-Jupiter. However, an intense frag-
mentation cascade may have occurred as well as a sub-
stantial radial mixing of material.

6.2. The Asteroid Belt

6.2.1. Main characteristics

The origin of the Asteroid Belt is still a puzzle. Its main
characteristics that have to be explained by an adequate
model, are the following:

1. The absence of any large body (Ceres’s radius is only
∼450 km);

2. A strong dynamical excitation. Eccentricities and in-
clinations are 0.15 on average, with a dispersion of 0.1;

3. A strong radial mixing. Spectroscopic studies of
Asteroid families show that they are mixed over a dis-
tance of a few 0.1 a.u. typically as shown by Gradie &
Tedesco (1982) (see Fig. 14). This contradicts the sim-
ple model of the spatial zoning of spectroscopic types
due to the initial temperature gradient in the proto-
planetary disc;

4. A large mass depletion. By comparison to the model of
minimum mass nebula, about 99.9% of solid material
initial mass may have disappeared (Weidenschilling
1977).

6.2.2. Possible role of collisional diffusion

All models that have been proposed so far require one
way or another the presence of Jupiter with its current
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Fig. 15. Local abundances of types 1, 2, 3 and 4 families at the end of the collisional diffusion triggered by a 15 M⊕ body.

mass: via the coupling with Saturn and the dissipation of
the solar nebula (Lecar & Franklin 1997; Nagasawa et al.
2000), via the coupling with large scattered planetesimals
(Wetherill 1989; Petit et al. 1999) and via the coupling
with initially present protoplanets (Wetherill 1992; Petit
et al. 2000).

It is suggested hereafter that some characteristics of
the Asteroid Belt may be explained by the early presence
of a mere 15 M⊕ Jupiter embryo. Possible consequences of
a collisional diffusion in the early Asteroid Belt triggered
by a 15 M⊕ Jupiter embryo are reviewed here.

1. As shown in Sect. 6.1, if collisional diffusion was active
during the formation of the Asteroid Belt, it may have
slowed-down planetary accretion within it. This may
be a partial answer to the problem of the absence of a
fully-grown planet in this region. The biggest runaway
body might be of a few hundred kilometers, which is
qualitatively consistent with what is observed today;

2. Figure 6 shows that in the region of the Asteroid Belt,
the collisional diffusion triggered by a 15M⊕ perturber
may increase eccentricities and inclinations up to 0.05
at most, which is at least two or three times lower
than what is currently observed. A strong gradient of
eccentricities and inclinations also appears in simula-
tions, but is not observed in the actual Asteroid Belt.
These arguments make unlikely that the current ex-
cited dynamical state of the Asteroid Belt is the result
of an early collisional diffusion. However, this conclu-
sion does not imply that collisional diffusion never hap-
pened, as the present study only deals with the first
106 years of the Asteroid Belt. The latter may have
been deeply modified over 4.5 billions years of evo-
lution, under the influence of giant planets (Brunini
1988; Ries 1996);

3. Numerical simulation gives interesting results concern-
ing the radial mixing of spectroscopic asteroid families.

The particles were flagged according to their initial
semi-major axes into four distinct populations. The
type 1 family extends initially below 2.5 a.u., the type 2
family extends from 2.5 to 3.5 a.u., the type 3 fam-
ily extends from 3.5 to 4.5 a.u. and the type 4 fam-
ily extends beyond 4.5 a.u. The resulting radial distri-
bution after the propagation of collisional diffusion is
presented in Fig. 15 and must be compared to Fig. 14.
Families of types 1 and 2 slightly overlap because they
are far away from the perturber, and thus are little
affected by the collisional diffusion. The type 3 family
is qualitatively consistent with the actual P spectro-
scopic family: it spreads widely in both inward and out-
ward directions. However, the most interesting result
relates to the family of type 4, the abundance profile
of which is very similar to the actual D spectroscopic
family: it is predominant at 5 a.u. and decreases lin-
early down to 0 at about 3 a.u.;

4. Regarding the large mass depletion, the collisional dif-
fusion may not by itself constitute an explanation:
within the assumptions of our model (i.e. no fragmen-
tation, equal-mass bodies, no gravitational deflection)
no significant mass depletion is observed. However, the
coupling between fragmentation and gas drag, which
has not been considered here, may provide a mecha-
nism that depletes the system’s mass, when associated
with collisional diffusion. Indeed gas drag eliminates
sub-kilometer fragments on short time-scales. This will
be part of some future works.

In conclusion, it does not seem possible that collisional
diffusion explains by itself every characteristic of the
Asteroid Belt. However, some of them may be a signa-
ture of an early collisional diffusion triggered by a 15 M⊕
proto-Jupiter, in particular the observed radial mixing
of asteroid spectroscopic families. This may suggest that
the zoning of asteroid spectroscopic asteroid families may
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be anterior to the apparition of Jupiter with its present
mass. Thus, it might be possible that collisional diffusion
occurred in the early Asteroid Belt, shaping the struc-
ture of spectroscopic asteroid families, and that another
subsequent mechanism depleted the system’s mass and
increased eccentricities and inclinations, as suggested by
Lecar & Franklin (1997); Wetherill (1989) or Wetherill
(1992).

7. Conclusion

Using a simple model of a disc of colliding particles per-
turbed by a giant-planet embryo at 5.2 a.u., the coupling
of inelastic rebounds among particles with the embryo’s
gravitational perturbations has been investigated. The
perturber’s mass is in the range from 0.5 M⊕ to 300 M⊕,
paying a deeper attention to the case of a 10–15 M⊕ body,
compatible with the “solid-core” model of Jupiter’s forma-
tion. Initially the disc is cold: particle random velocities
are of 10 m/s, comparable to kilometer-sized planetesi-
mal escape velocity. Once inelastic collisions and proto-
planet’s gravitational perturbations are introduced, the
system shows major modifications. The main effects are
the following:

– A heat transfer, or “collisional diffusion” is triggered
in the vicinity of the perturber’s orbit and propagates
away from it. The heated region extends over 2 to 3 a.u.
inwards and at least over 4 a.u. outwards;

– The propagation timescale is typically a few 105 years
inwards and about 5 times longer outwards for a
comparable particle surface density. This timescale
decreases with the perturber’s mass: it drops to a
few 104 years for the inward diffusion triggered by a
300 M⊕ perturber;

– In the perturbed region, average random velocities
range from 100 to 1000 m/s, decreasing away from the
perturber;

– The radial mixing length-scale ranges from a few 0.1
to 1 a.u.;

– The extent of the perturbed region increases with the
perturber’s mass and is quantified in Fig. 13 and in
Table 1.

Bearing in mind the limited scope of this model (see
Sect. 2), potential consequences of collisions on plane-
tary accretion can be drawn: collisional diffusion may
slow down runaway accretion processes in the region of
the Asteroid Belt as soon as a 15 M⊕ Jupiter embryo is
formed; radial mixing of particles is qualitatively consis-
tent with the actual mixing of the asteroid spectroscopic
families. These points suggest that collisional diffusion
plays a role in the early evolution of the Asteroid Belt.
However, this statement may be revised in light of two op-
posite effects taking place in the actual early Solar System.
Fragmentation might act as an “energy well” prevent-
ing the propagation of collisional diffusion. Conversely,
an increased planetesimal size in the proximity of Jupiter

(larger than in the inner Solar System, as used by Pollack
et al. 1996), should increase the efficiency of diffusion to
heat-up the inner Solar System. Unfortunately, the true
initial size distribution of planetesimals, as a function of
heliocentric distance, is highly unknown. In any case, col-
lisional diffusion has proved to be a potentially effective
mechanism that must be included in studies of planetary
formation. The open issues are the following:

– What is the long-term evolution of the collisional dif-
fusion?

– What is the fate of coorbital objects? Are they stable
against collisional diffusion?

– What is the impact of gas drag?
– What is the impact of fragmentation and mass distri-

bution?

Some of these questions will be investigated in a forth-
coming paper.
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Beaugé, C., & Aarseth, S. J. 1990, MNRAS, 245, 30
Brunini, A. 1988, MNRAS, 293, 405
Benz, W., & Asphaug, E. 1999, Icarus, 142, 5
Brahic, A. 1976, Jour. Comp. Phys., 22, 171
Giblin, I., Martelli, G., Smith, P. N., & Di Martino, M. 1994,

Planet. Space Sci., 42, 1027
Gradie, J., & Tedesco, E. 1982, Science, 216, 1405
Greenberg, J. M., Wacker, J. F., Hartmann, W. L., &

Chapman, C. R. 1978, Icarus, 35, 1
Hanninen, J., & Salo, H. 1992, Icarus, 97, 228
Hanninen, J., & Salo, H. 1994, Icarus, 108, 325
Hayashi, C., Nakazawa, K., & Adachi, I. 1977, Publ. Astron.

Soc. Jpn., 29, 163
Hayashi, C. 1981, Prog. Theor. Phys. Suppl., 70, 35
Hertzsch, J.-M., Scholl, H., Spahn, F., & Katzorke, I. 1997,

A&A, 320, 319
Ida, S., & Makino, J. 1993, Icarus, 106, 210
Kokubo, E., & Ida, S. 2000, Icarus, 143, 15
Kortenkamp, S. J., & Wetherill, G. W. 2000, Icarus, 143, 60
Lecar, M., & Franklin, F. 1997, Icarus, 129, 134
Lissauer, J. J. 1987, Icarus, 69, 249
Lissauer, J. J., Pollack, J. B., Wetherill, G. W., & Stevenson,

D. J. 1995, In Neptune and Triton ed. D. Cruikshank,
(University of Arizona Press, Tucson), 37

Martelli, G., Ryan, E. V., Nakamura, A. M., & Giblin, I. 1994,
Planet. Space Sci., 42, 1013

Marzari, F., & Scholl, H. 1997, PSS, 45, 337
Marzari, F., & Scholl, H. 2000, ApJ, 543, 328
Murison, A. 1989, AJ, 97, 1496
Nagasawa, M., Tanaka, H., & Ida, S. 2000, AJ, 119, 1480
Nakamura, A., & Fujiwara, A. 1991. Icarus, 92, 132
Petit, J.-M., & Farinella, P. 1993, CeMDA, 57, 1
Petit, J.-M., Morbidelli, A., & Valsecchi, G. B. 1999, Icarus,

141, 367



S. Charnoz et al.: Collisions in a perturbed planetesimal disc 701

Petit, J.-M., Morbidelli, A., & Chambers, J. 2000, submitted
to Icarus

Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. 1996,
Icarus, 124, 62

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery,
B. P. 1992, Numerical Recipes in Fortran (Cambridge
University Press)

Ries, J. G. 1996, Icarus, 121, 202
Richardson, D. C., Quinn, T., Stadel, J., & Lake, G. 2000,

Icarus, 143, 45
Safronov, V. S. 1969, in Evolution of the protoplanetary cloud

and formation of the Earth and planets (Moscou: Nauka
Press)

Spaute, D., Weidenschilling, S. J., Davis, D. R., & Marzari, F.
1991, Icarus, 92, 147

Stern, S. A., & Weissman, P. R. 2001, Nature, 409, 589

Stewart, G. R., Lin, D. N. C., & Bodenheimer, P. 1984, in
Planetary rings, ed. Greenberg & Brahic (Tucson: Univ. of
Arizona Press), 447

Tanaka, H., & Ida, S. 1996, Icarus, 120, 371
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