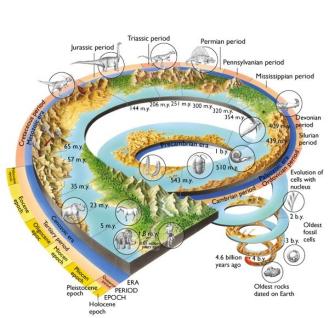


Exobiologie

Sébastien Rodriguez Université Paris 7 / A.I.M.

sebastien.rodriguez@cea.fr

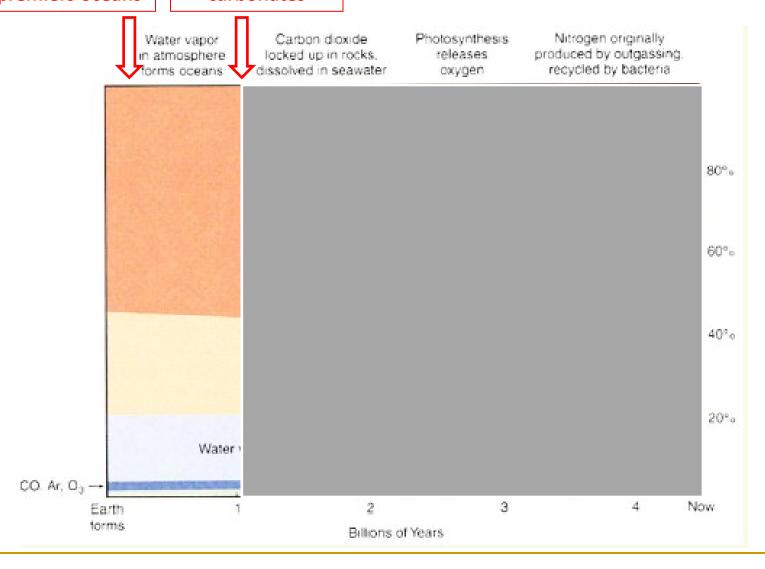
La vie sur Terre : un modèle à comprendre

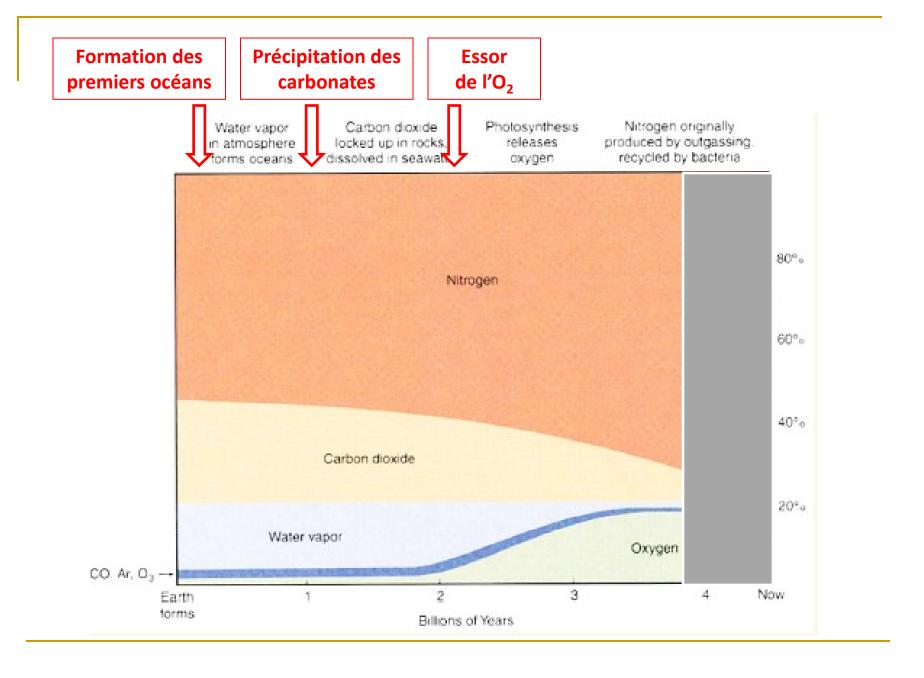


Sommaire

- Formation des océans et de l'atmosphère terrestre
- L'oxygène ?
- Définition de la vie ??
- Premières traces de vie sur Terre

De l'atmosphère Archéenne à l'atmosphère actuelle : l'essor de l'O₂


Bilan au début de l'Archéen (env. 4 Ga)


- Composition de l'atmosphère : env. $60 \% N_2$, $20\% CO_2$ et $20\% d'H_2O + traces de <math>O_2$, CH_4 , NH_3 , SO_2 ...
- Pression atm. (surface) = env. 1 bar
- Effet de serre suffisant pour maintenir la température en surface = 0-100°C (eau liquide), malgré la faible luminosité solaire de l'époque
- Température océans = env. 60°C
- Tectonique active
- Piégeage continu du CO₂ atmosphérique sous forme de dépôts sédimentaires de carbonates
- Libération continue du CO₂ du manteau par volcanisme

MAIS, bouleversement majeur à partir de 2.2 Ga !! (début du Protérozoïque)

Formation des premiers océans

Précipitation des carbonates

Ajout de la contribution de l'O₂

- Aujourd'hui : O₂= 21%
- Production d'O₂?
 - □ <u>Dissociation photochimique</u> de H_2O par UV : oui, mais faible production (1 à 2% des niveaux actuels) \Rightarrow formation d'une mince couche d' O_3
 - Photosynthèse par les cyanobactéries (ou autres):
 CO₂ + H₂O + lumière → composés organiques (C carbone) + O₂
 □ I mécanisme capable de produire de l'O₂ en masse

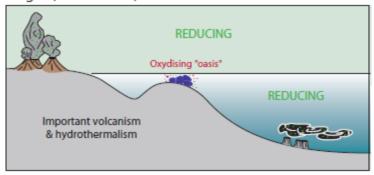
Destruction O₂:

- 1. « lessivage » chimique dans un environnement très réduit (oxydation très efficace des roches de surfaces)
- 2. Si le C produit par photosynthèse reste libre, la respiration consomme le C et $l'O_2$ libéré pour les recombiner naturellement en CO_2 (réaction inverse de la photosyn.)

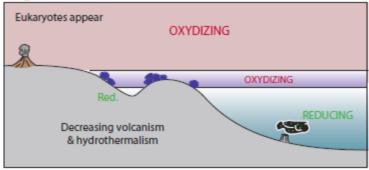
Problèmes :

- 3. Restait-il suffisamment de CO₂ dans l'atmosphère Archéenne pour produire l'O₂ aujourd'hui observé (cf. photosynthèse)
- 4. Cyanobactéries actives depuis 3.5 Ga : retard de l'essor de l'O₂ de 1.3 Ga ??

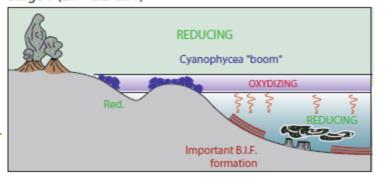
Problèmes n°2 & 3 : piégeage du C et quantité de CO₂ disponible ? <u>Problèmes résolus !</u>

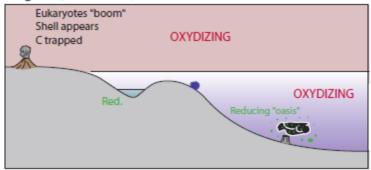

- Problème n°2 : si le C créé par photosynthèse n'est pas piégé, il est immédiatement dégradé par la réaction inverse (respiration)
 - Enregistrements géologiques : changement important de style géologique autour de 2.5-2.3 Ga (compositions des laves ...)
 - □ Le refroidissement de la Terre est alors suffisant pour la mise en place d'un « vraie » tectonique des plaques chute brutale de l'activité volcanique et géothermale
 - Création des marges passives et des plateformes continentales (continents stables): transition plaque océanique et plaque continentale sans subduction (épaule du rift qui a ouvert un océan)
 - Le C résultant de la photosynthèse est piégée dans les sédiments, maintenant « stockés » de façon stable
- Problème n°3 : certains scénarii prévoient une très faible teneur atm. en CO_2 au début de l'Archéen, pas assez pour produire tout l' O_2 nécessaire par photosyn.
 - CO₂ atmosphérique en équilibre <u>dynamique</u> entre ses « sources » (volcans) et ses « puits » (précipitation des carbonates et photosynthèse)
 - CO₂ continument réalimenté par les volcans

Problèmes n°1 & 4 : lessivage et retard de croissance de l'O₂

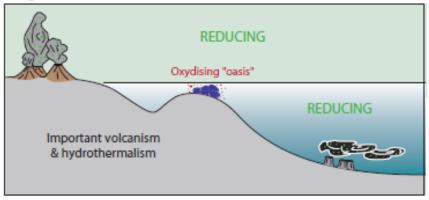

- Aujourd'hui: O₂= 21%
- Pendant tout l'Archéen : absence d'O₂ dans l'atmosphère à cause du <u>lessivage</u>. Quand toutes les roches de surface sont suffisamment oxydées, possibilités de garder une atmosphère d'O₂.

⇒ « oxydation progressive de réservoirs réduits »

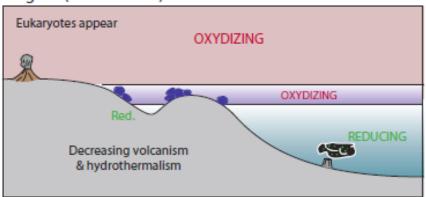

Stage I (4.1 - 2.7 Ga ?)


Stage III (2.2 - 0.6 Ga ?)

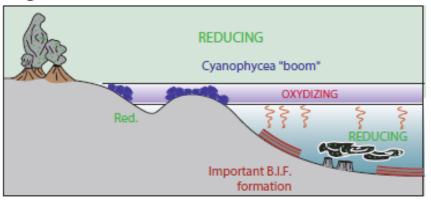
Stage II (2.7 - 2.2 Ga?)

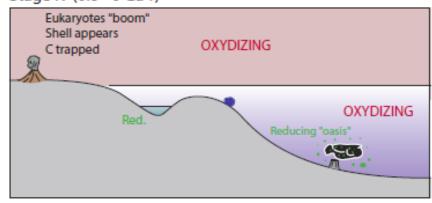


Stage IV (0.6 - 0 Ga?)

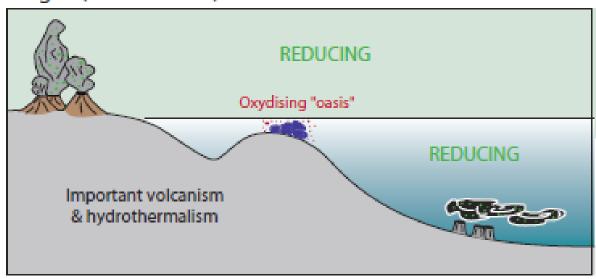


Oxydation progressive de réservoirs réduits


Stage I (4.1 - 2.7 Ga ?)

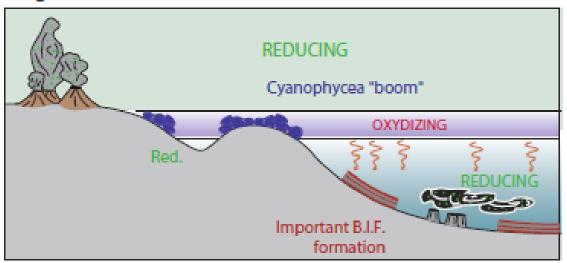

Stage III (2.2 - 0.6 Ga ?)

Stage II (2.7 - 2.2 Ga ?)


Stage IV (0.6 - 0 Ga ?)

Modèles montrant schématiquement comment les cyanobactéries change le monde Formation des gisements de fer rubané (ou Banded Iron Formation, BIFs) en -II- et la ségrégation de l'O₂ dans les océans, puis libération dans l'atmosphère en -III- et -VI-

Oxydation progressive de réservoirs réduits -l-


Stage I (4.1 - 2.7 Ga ?)

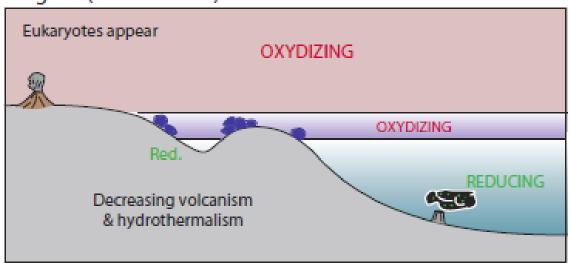
- Atmosphère et hydrosphère : milieux très réduits
- Libération de l'O₂ dans les « oasis » par cyanobactéries
- Oxydation locale des minéraux/éléments réduits, en particulier le fer (sous forme Fe²+ par hydrothermalisme ⇒ Fe³+)

Oxydation progressive de réservoirs réduits -II-

Stage II (2.7 - 2.2 Ga ?)

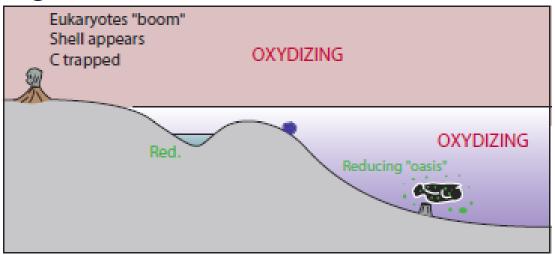
- Atmosphère et hydrosphère : milieux encore très réduits
- La Terre est suffisamment refroidie pour réduire l'activité volcanique et l'hydrothermalisme
- A 2.5-2.3 Ga: pic de BIF (Banded Iron Formations): oxydation massive du Fe²⁺ en Fe³⁺ par l'O₂ libéré par les cyanobactéries (tant que le fer des océans n'est totalement oxydé)

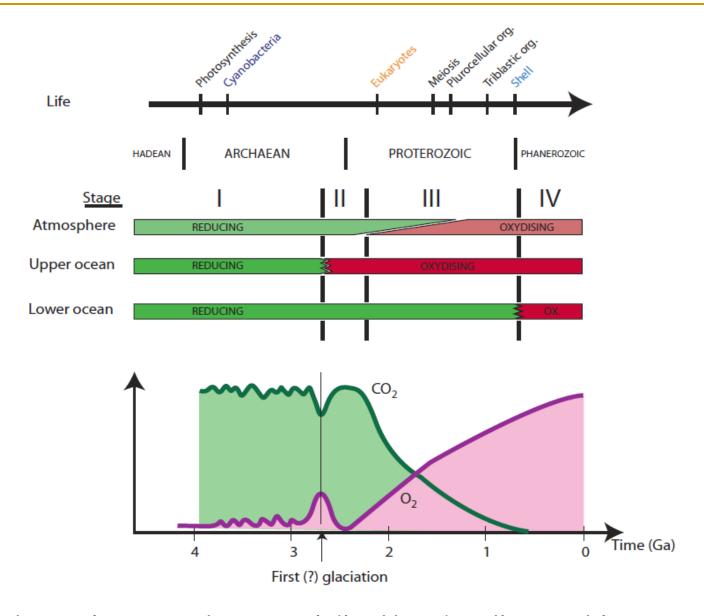
 pas de stockage dans l'atmosphère
- L'océan commence à saturer en 0₂ près de la surface (dans les milieux favorables aux cyanobactéries et à la photosynthèse)


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Banded Iron Formation ("BIF") près de Jasper Nob : sédiments chimiques très riches en fer, alternativement oxydé et réduit

Oxydation progressive de réservoirs réduits -III-


Stage III (2.2 - 0.6 Ga ?)


- Atmosphère/Hydrosphère : complètement/partiellement oxydée
- Réduction brutale de l'activité volcanique et l'hydrothermalisme (dès 2.2 Ga)
- Photosynthèse bien plus efficace
- Une fois tout le fer des océans oxydé : l'O₂ libéré par les cyanobactéries passe dans l'atmosphère
- L'océan saturé en 0₂ près de la surface
- Apparition des premiers Eukaryotes en surface

Oxydation progressive de réservoirs réduits -IV-

Stage IV (0.6 - 0 Ga ?)

- Atmosphère : complètement oxydée
- Hydrosphère : complètement oxydée
- Intoxication des cyanobactéries : O₂ libéré est un poison
- Persistance « d'oasis réductrices » où peuvent survivre les cyanobactéries (milieux confinés et réducteurs)
- Essor des Eukaryotes en surface !!!

Pendant le Protérozoïque, la quantité d'O₂ libre dans l'atmosphère augmente de 1 à 15%, essentiellement libérée par les cyanobactéries

Oxydation de l'atmosphère : coïncidence ou évolution inévitable ?

- Coïncidences étonnantes : système très instable ?
 - 1. Baisse régulière de la quantité de CO₂ dans l'atmosphère (formation des carbonates + photosynthèse) ⇒ diminution progressive de l'effet de serre
 - 2. Il ya 2.5-2.3 Ga : bouleversement du style géologique, permettant le piégeage du C et une photosynthèse enfin efficace
 - 3. Augmentation progressive de la luminosité solaire
 - 4. Il ya 2 Ga : **Soleil devient assez chaud** pour maintenir une T° de surface > 0°, même avec un effet de serre réduit

Sinon : Chute de T° ⇒ Eau gelée ⇒ Mort des cyanobactéries ⇒ fin de l'histoire ... 😕

Enregistrements de glaciations à 2.4 et 2.1 Ga : basculements ratés vers un système oxydant (0_2) , finalement réussi à partir de 2 Ga quand le Soleil a été assez chaud !!

- Système plus stable qu'on ne le pense : rétro-actions fortes
 - Si chute de la T° et glaciation \Rightarrow disparition des organismes photosynthétiques et arrêt de la précipitation des carbonates \Rightarrow Destruction du CO₂ enrayée \Rightarrow effet de serre
 - Emission continue de CO₂ par les volcans et CH₄ par bactéries chimiosynthétiques méthanogènes « protégées » ⇒ effet de serre renforcé ⇒ T° augmente ⇒ reprise des cyanobactéries ©